Maloriented bivalents have metaphase positions at the spindle equator with more kinetochore microtubules to one pole than to the other.

نویسندگان

  • James R LaFountain
  • Rudolf Oldenbourg
چکیده

To test the "traction fiber" model for metaphase positioning of bivalents during meiosis, kinetochore fibers of maloriented bivalents, induced during recovery from cold arrest, were analyzed with a liquid crystal polarizing microscope. The measured birefringence retardation of kinetochore fibers is proportional to the number of microtubules in a fiber. Five of the 11 maloriented bivalents analyzed exhibited bipolar malorientations that had at least four times more kinetochore microtubules to one pole than to the other pole, and two had microtubules directed to only one pole. Yet all maloriented bivalents had positions at or near the spindle equator. The traction fiber model predicts such maloriented bivalents should be positioned closer to the pole with more kinetochore microtubules. A metaphase position at the spindle equator, according to the model, requires equal numbers of kinetochore microtubules to both poles. Data from polarizing microscope images were not in accord with those predictions, leading to the conclusion that other factors, in addition to traction forces, must be involved in metaphase positioning in crane-fly spermatocytes. Although the identity of additional factors has not been established, one possibility is that polar ejection forces operate to exert away-from-the-pole forces that could counteract pole-directed traction forces. Another is that kinetochores are "smart," meaning they embody a position-sensitive mechanism that controls their activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Malorientation in half-bivalents at anaphase: analysis of autosomal laggards in untreated, cold-treated, and cold-recovering crane fly spermatocytes

Exposing crane fly larvae to 6 degrees C or returning them to 22 degrees C after exposure to 6, 2, or 0.2 degrees C can induce any number of autosomes in their primary spermatocytes to lag near the spindle equator at anaphase. Autosomal laggards in cold-recovering cells are contained in bivalents until anaphase (Janicke, M. A., and J. R. LaFountain, 1982, Chromosoma, 85:619-631). We report here...

متن کامل

Kinetochore microtubule numbers of different sized chromosomes

For three species of grasshoppers the volumes of the largest and the smallest metaphase chromosome differ by a factor of 10, but the microtubules (MTs) attached to the individual kinetochores show no corresponding range in numbers. Locusta mitotic metaphase chromosomes range from 2 to 21 mum, and the average number of MTs per kinetochore is 21 with an SD of 4.6. Locusta meiotic bivalents at lat...

متن کامل

Chromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator

We used laser microsurgery to cut between the two sister kinetochores on bioriented prometaphase chromosomes to produce two chromosome fragments containing one kinetochore (CF1K). Each of these CF1Ks then always moved toward the spindle pole to which their kinetochores were attached before initiating the poleward and away-from-the-pole oscillatory motions characteristic of monooriented chromoso...

متن کامل

Searching for the middle ground: mechanisms of chromosome alignment during mitosis

Chromosome alignment at the spindle equator, or congression, is a remarkably conspicuous event during mitosis that defines the metaphase stage of the cell cycle. This movement of chromosomes to the spindle equator is necessary for accurate segregation of a cell’s replicated DNA in organisms as diverse as plants, insects, and mammals (for review see Khodjakov et al., 1999). Results from more tha...

متن کامل

Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement.

In mitotic vertebrate tissue cells, chromosome congression to the spindle equator in prometaphase and segregation to the poles in anaphase depend on the movements ofkinetochores at their kinetochore microtubule attachment sites. To test if kinetochores sense tension to control their states of movement poleward (P) and away from the pole (AP), we applied an external force to the spindle in prean...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 12  شماره 

صفحات  -

تاریخ انتشار 2004